Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Acta Biotheor ; 71(1): 1, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2112733

ABSTRACT

We propose a framework for the description of the effects of vaccinations on the spreading of an epidemic disease. Different vaccines can be dosed, each providing different immunization times and immunization levels. Differences due to individuals' ages are accounted for through the introduction of either a continuous age structure or a discrete set of age classes. Extensions to gender differences or to distinguish fragile individuals can also be considered. Within this setting, vaccination strategies can be simulated, tested and compared, as is explicitly described through numerical integrations.


Subject(s)
Communicable Diseases , Epidemics , Vaccines , Animals , Vaccination , Immunization
2.
Networks and Heterogeneous Media ; 0(0):21, 2022.
Article in English | Web of Science | ID: covidwho-1792333

ABSTRACT

Deterministic compartmental models for infectious diseases give the mean behaviour of stochastic agent-based models. These models work well for counterfactual studies in which a fully mixed large-scale population is relevant. However, with finite size populations, chance variations may lead to significant departures from the mean. In real-life applications, finite size effects arise from the variance of individual realizations of an epidemic course about its fluid limit. In this article, we consider the classical stochastic Susceptible-Infected-Recovered (SIR) model, and derive a martingale formulation consisting of a deterministic and a stochastic component. The deterministic part coincides with the classical deterministic SIR model and we provide an upper bound for the stochastic part. Through analysis of the stochastic component depending on varying population size, we provide a theoretical explanation of finite size effects. Our theory is supported by quantitative and direct numerical simulations of theoretical infinitesimal variance. Case studies of coronavirus disease 2019 (COVID-19) transmission in smaller populations illustrate that the theory provides an envelope of possible outcomes that includes the field data.

SELECTION OF CITATIONS
SEARCH DETAIL